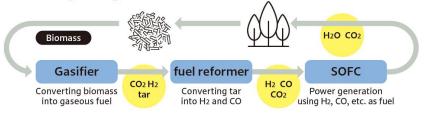


Innovative Carbon-Neutral Technologies from Osaka

Osaka Prefectural Government

大阪弁スコ技匠N
Innovative Carbon-Neutral Technologies from Osaka
Renewable Energy

Approximately 66% of Japan is covered by forests.
Will local forests be used for power plants?


Local production and consumption of energy through the use of unused biomass

Energy generation from unused biomass resources

Japan has forest resources that cover nearly 66% of the land area. Developing and popularizing facilities aimed at generating and utilizing renewable energy locally will lead to a sustainable society and revitalization of local communities.

Overview of SOFC biomass power generation technology

Realizing sustainable energy sharing by generating electricity using local forest resources

Development of a catalyst that can be easily regenerated by heating

The need for tar reforming catalysts

A catalyst regeneration mechanism (reforming function) is incorporated into the equipment

Tar generated during the pyrolysis gasification process has been a factor in increasing the burden of equipment maintenance and reducing power generation efficiency.

This technology has developed a catalyst regeneration mechanism, which significantly reduces the frequency of catalyst replacement.

Our unique catalyst technology significantly reduces tar emissions.

This power generation system can be introduced in small and medium-sized forestry and manufacturing industries.

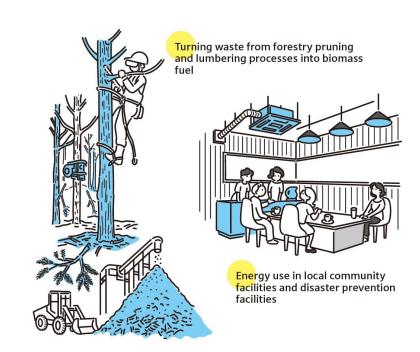
Power generation capacity of 100kW or less

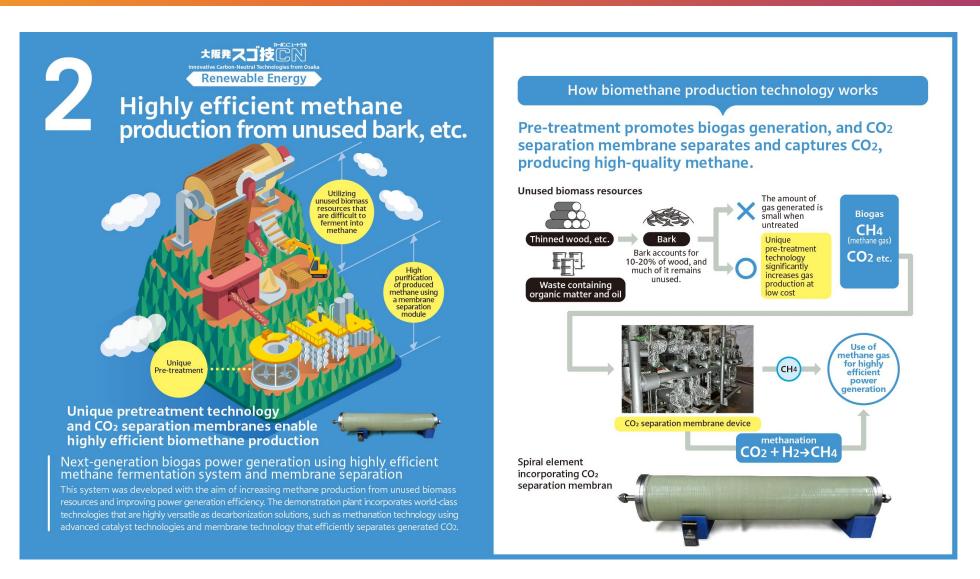
Approximately 20households

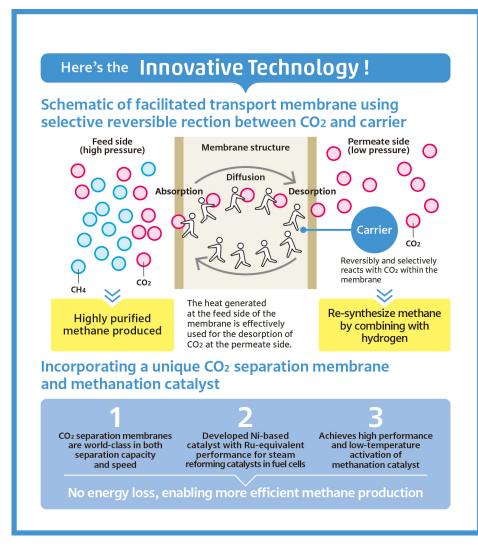
Can provide the electricity needed for approximately 20 average households

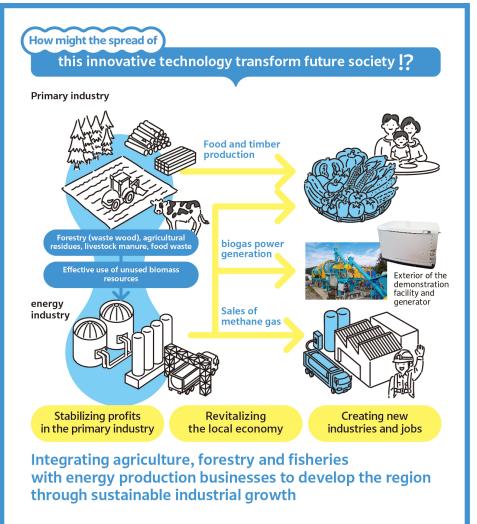
- Power generation possible using both gas engines and SOFCs
- Tar removal confirmed in demonstration experiments
- Reformed tar itself can be used as fuel, improving power generation efficiency

Tar combustion


Reformed gas combustion


A transparent flame of tar-reformed H2 captured with an IR camera $\,$


How might the spread of


this innovative technology transform future society!?

Creating a sustainable community through forest resources and "local production for local consumption" energy infrastructure

3

大阪発**スコ技** にいい ために 大阪発**スコ技** にいい CO₂ Capture

Promotion of CCUS (Carbon dioxide Capture, Utilization, and Storage) through manufacturing

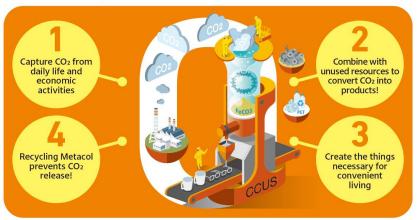
With the technology to capture and enclose CO₂ in metals, flexible manufacturing has become possible.

Promoting CCUS through manufacturing

Metacol is a new material that can capture greenhouse gas CO_2 and use it as a manufacturing material. Utilizing recycled resources and trapping the generated CO_2 in everyday products contributes to carbon neutrality and the circular economy.

Humanity's deep relationship with CO₂

CO₂ is a familiar substance to us, which makes "decarbonization" difficult.



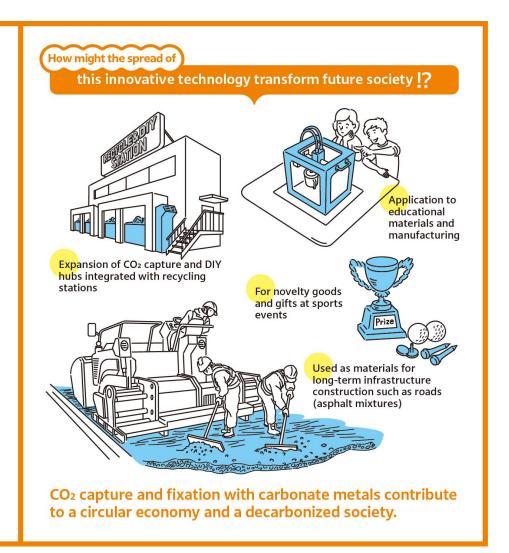
Both people and society emit CO₂ in exchange for using energy.

Solve problems through new ideas

What if the CO₂ emitted from our daily lives could be transformed into various "things"?

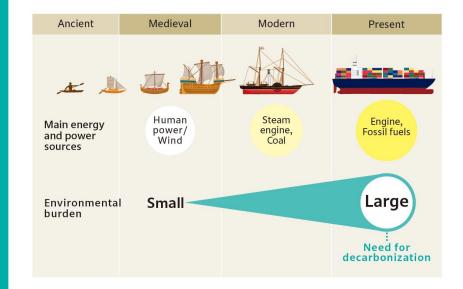
Capturing CO₂ from daily life into essential "things" — that is Metacol, a new material that enables circular manufacturing.

Products made using Metacol


metacol™ golf gift

metacol™ "Yasashisa" craypas

metacol™ eco notebook



other maritime mobility are important initiatives in achieving carbon neutrality.

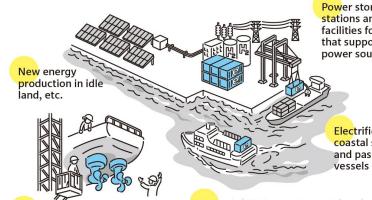
Transition of ship energy and power sources

Since ancient times, humanity has repeatedly undertaken challenging voyages (transportation) using "ships." Throughout this history of movement, diverse forms of energy and power sources have been developed.

Decarbonization is needed not only for cars.

As the world aims for carbon neutrality, new industries combining shipping and maritime transport with new energy production, as well as environmentally friendly transport services, may be rapidly created.

The latest yacht generates its own energy!!


The electric yacht, developed and demonstrated with support from Osaka Prefecture, is equipped with advanced energy systems as well as technologies cultivated through the "history of ships."

How might the spread of

this innovative technology transform future society !?

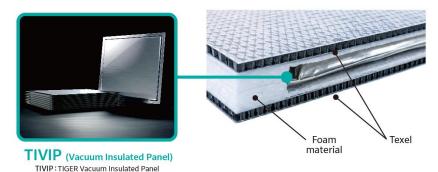
As GX (Green Transformation) in maritime mobility advances, not only will it reduce environmental impact, but it may also create new industries combining shipbuilding and maritime transport with new energy production, as well as eco-friendly transport services.

Power storage stations and power facilities for ships that support core power sources

> Electrification of coastal ships and passenger

Shipbuilding with electric propulsion systems + EMS Coastal shipping services with reduced pollution such as exhaust gas and oil spills

EMS (Energy Management System) Domestic shipping/Domestic vessels (Routes and vessels that travel between ports in Japan)

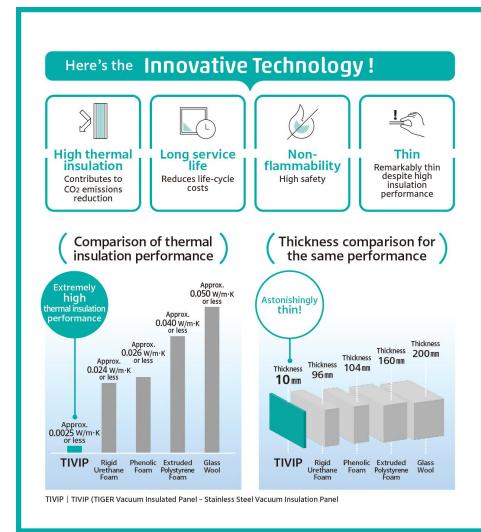

*For social implementation and commercialization of the technology, legal and safety issues must be addressed.

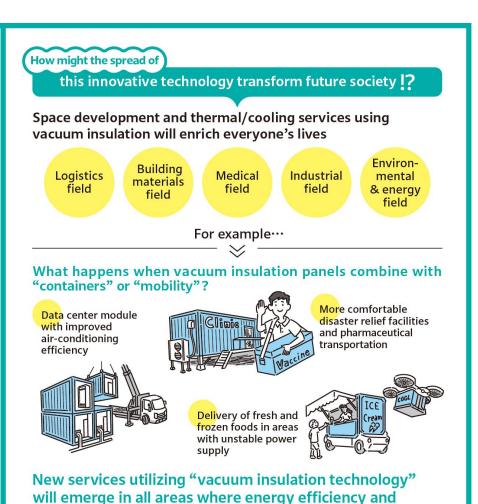
New coastal industries will be born that combine new energy production with energy utilization at shipyards and port facilities.

Structure of Vacuum Insulation Panels

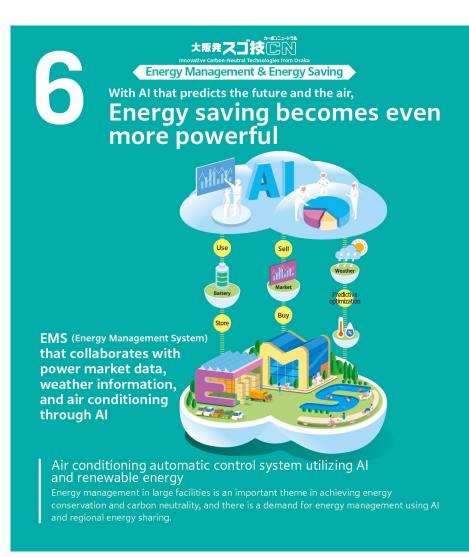
Vacuum insulation panels, derived from thermos bottle heat-retention and cooling technology, bring "energy saving" to a new dimension.

Applications and Deployment Examples


Vacuum Insulated Reefer Container



Vacuum Insulated Sleeve Box "Protect BOX Thermal"



Vacuum Insulated Roll Box

temperature management are required

Mechanism of Al-equipped EMS

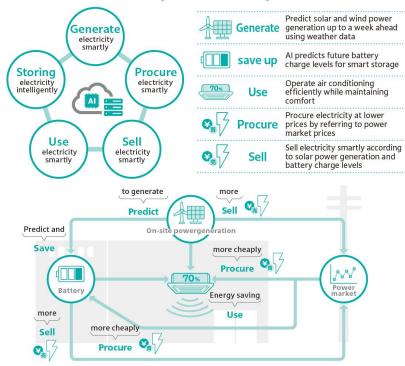
Al centrally manages facility power energy based on big data

Applications and Examples

Large-scale facilities where many people gather and are used for various purposes, achieving integrated energy-saving and energy management linked with air conditioning and renewable energy equipment.

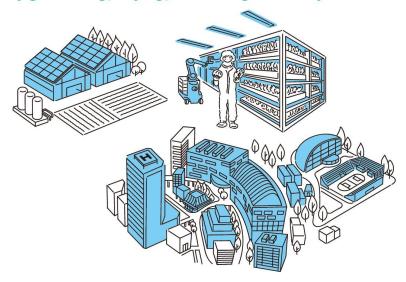
Hospitals and schools

Public facilities and sports facilities

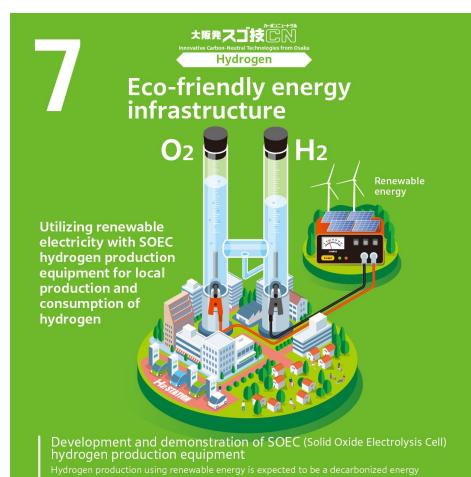


Amusement and commercial facilities

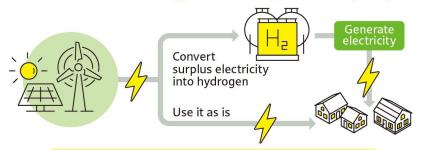
Factories and warehouses


Integrated management of five types of information in the cloud. All analyzes the most efficient power procurement for smart power consumption.

How might the spread of


this innovative technology transform future society !?

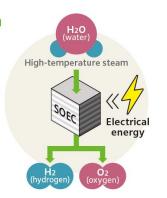
Plant factories and agricultural greenhouses that provide a comfortable environment for crops 24/7/365 by generating, buying, and selling electricity.


Spread of systems (CEMS) that enable electricity sharing and energy management across entire communities.

CEMS (Community Energy Management System)
A system for managing energy across entire communities.

What's good if everyone can produce hydrogen?

What if renewable energy could freely produce hydrogen?



Surplus renewable electricity can be converted into hydrogen, stored, and used anytime, freely.

How does SOEC produce hydrogen with water and electricity?

SOEC (Solid Oxide Electrolysis Cell) is one of the technologies that generates hydrogen by electrolysis of water.

The principle is the same as the water electrolysis experiment conducted in school science classes. By using renewable electricity, CO₂-free "green hydrogen" can be obtained, making it a promising energy technology.

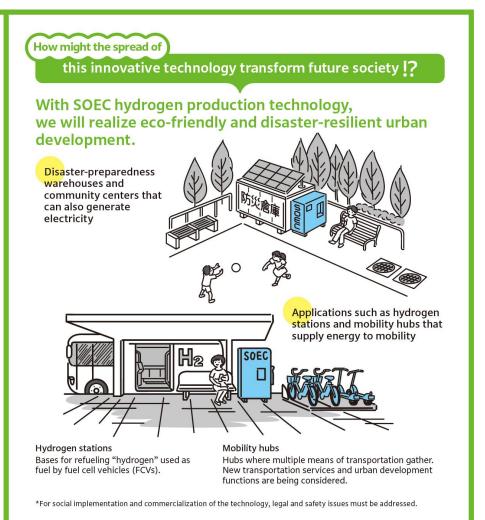
Hydrogen can be produced at about 80 yen per 1 Nm³ (normal cubic meter). Based on electricity costs (e.g.,

Based on electricity costs (e.g., national average unit price of low-voltage power = 28.39 yen/kWh), estimated by the Green Innovation Research Institute, the technology developer.

ltem	Specifications	
	SOEC	SOFC
1 Operating (Stack) Temperature	700℃	
2 Current*	60.5A	30A
3 Operating Stack Voltage *	152.9V	100V
4 Operating Stack Power*	9250W	3000W
5 Steam Flow Rate (Pure Water)	83.6L/min(N)	
6 Water Flow Rate		35L/min(N)
7 Air Flow Rate	329L/min(N)	329L/min(N)
8 Hydrogen Production Unit	3.08kWh/Nm ³	
9 Dimensions	(D)870*(W)1850*(H)2000(excluding protrusions	

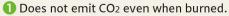
^{*}When operating in SOEC mode, electricity is input; in SOFC mode, electricity is output.

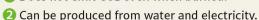
Hydrogen production system

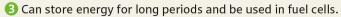


Internal structure

THE PARTY OF THE P

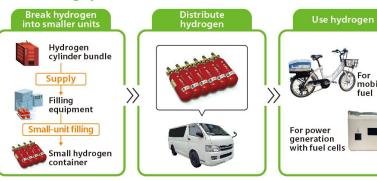

Control system screen

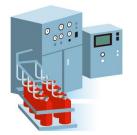



大阪発スコ技に Hydrogen Hydrogen safely and easily, both in daily life and in emergencies **HYDROGEN** Everyday **Emergency** vehicles preparedness read of zero-carbon Future mobility & disaster-prevention infrastructure that efficiently shares hydrogen Development and demonstration of a multi-type hydrogen filling system and hydrogen-based micromobility

What kind of society is a hydrogen society?

What's amazing about hydrogen?




4 Can produce methane from hydrogen and use it in city gas, etc.

What are the current challenges?

Insufficient development of supply infrastructure

What's needed are mechanisms and technologies to fill the "gaps"

Addressing the challenge of hydrogen delivery: filling and efficient supply

Multi-unit simultaneous filling system Significantly shortens the gas filling time for small hydrogen cylinders (bottles) Fill 10 units simultaneously in 70 minutes

If a portable hydrogen fuel cell is available at an evacuation shelter, it can charge 160 mobile phones for one hour each.

Supporting the spread of everyday mobility using "hydrogen fuel cells"

How might the spread of

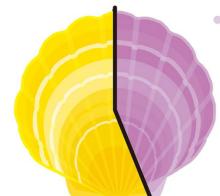
this innovative technology transform future society !?

Refuel hydrogen at drive-throughs or roadside stations and enjoy comfortable outdoor leisure at campsites

On the way back from shopping, purchase an energy bottle for an electric bicycle from a vending machine

*For social implementation and commercialization of the technology, legal and safety issues must be addressed.

Starting from "Osaka," it would be wonderful to see new services utilizing the advantages of hydrogen expand further!



Relationship between shell growth and "CO2"

Did you know that scallops absorb "CO2" as they grow in the sea?

In general, scallops grow from juvenile shells, and about half of their weight becomes a shell skeleton of calcium carbonate fixed with CO2 absorbed from the ocean, taking 2 to 4 years before shipment.

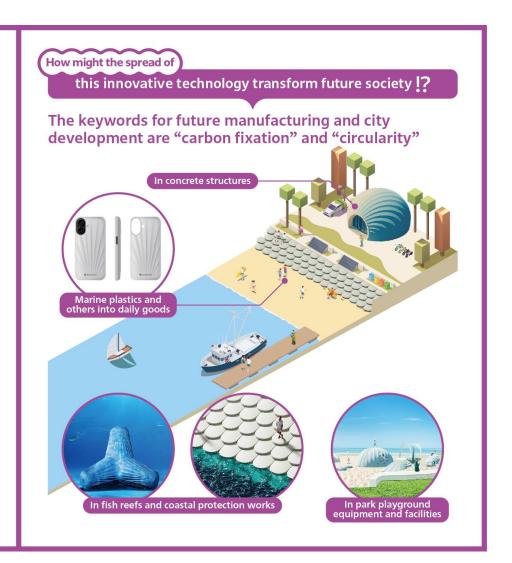
Absorb dissolved CO₂ in seawater and grow

More than 90% of scallop shells consist of calcium carbonate, of which

about 44% is CO2.

100 tons of discarded scallop shells have the ability to fix about 44 tons of CO₂!?

Manufacturing with lower GHG emissions (CO₂) is now possible



Combined with plastic and developed into "eco-products"

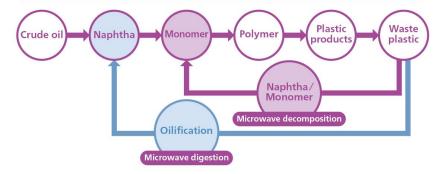
Mixing into concrete also helps reduce CO₂ emissions in the construction industry

What is required for spreading the Plastic Recycling System

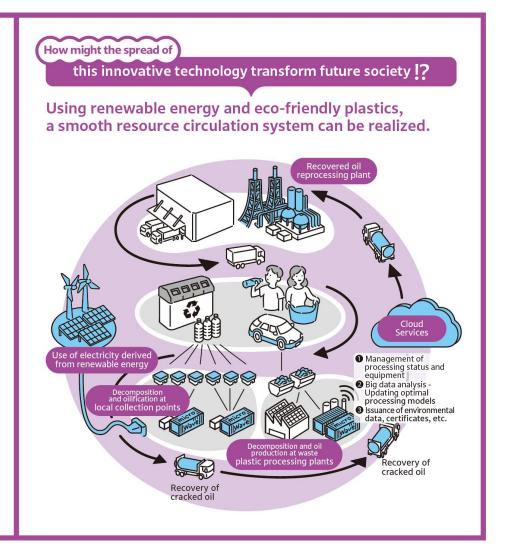
What challenges do we face in further promoting plastic resource recycling?

Current issues

- Currently, the recycling rate for plastics other than those for energy recovery is around 20%.
- Chemical recycling, which breaks down used plastics and returns them to their raw materials, needs to become more widespread.



Solution


Establishment of more efficient chemical recycling technology using microwaves with low CO₂ emissions

We are advancing innovative chemical recycling using microwaves — a technology well known from household ovens.

- Using renewable electricity as an energy resource to reduce CO₂ emissions to zero.
- 2 By recycling at local collection points, the entire recycling chain can be improved, especially transport efficiency.
- 3 By selectively heating target materials, microwaves enable precise control over transmitted energy and facilitate the production of diverse products.

Microwaves can transmit energy directly and selectively to substances, and the amount of energy transmitted can be flexibly and quickly controlled, making it possible to create different products.

Provision of Technical Information / List of exhibitors for Futre Life Experience

	Company Name	Technical Field
1	·Kansai Catalyst ·Bigvan	Renewable Energy
2	·Renaissance Energy Research	
3	·Sumitomo Electric Industries ·MUIC Kansai	CO ₂ capture
4	·Smert Design	Energy management & Energy Saving
5	·TIGER CORPORATION	
6	·MIRAKOTO	
7	Green Methanation ResearchSHINGU ENERGYT N Plan	Hydrogen
8	·MIRAIT ONE ·KINKIDENKI	
9	·Koushi Chemical Industry	Recycling
10	·Microwave Chemical	